Extensions 1→N→G→Q→1 with N=C22 and Q=C2xSL2(F3)

Direct product G=NxQ with N=C22 and Q=C2xSL2(F3)
dρLabelID
C23xSL2(F3)64C2^3xSL(2,3)192,1498

Semidirect products G=N:Q with N=C22 and Q=C2xSL2(F3)
extensionφ:Q→Aut NdρLabelID
C22:(C2xSL2(F3)) = C2xQ8:A4φ: C2xSL2(F3)/C2xQ8C3 ⊆ Aut C2248C2^2:(C2xSL(2,3))192,1506
C22:2(C2xSL2(F3)) = D4xSL2(F3)φ: C2xSL2(F3)/SL2(F3)C2 ⊆ Aut C2232C2^2:2(C2xSL(2,3))192,1004

Non-split extensions G=N.Q with N=C22 and Q=C2xSL2(F3)
extensionφ:Q→Aut NdρLabelID
C22.1(C2xSL2(F3)) = C2xC23.3A4φ: C2xSL2(F3)/C2xQ8C3 ⊆ Aut C2224C2^2.1(C2xSL(2,3))192,189
C22.2(C2xSL2(F3)) = C24.A4φ: C2xSL2(F3)/C2xQ8C3 ⊆ Aut C22246C2^2.2(C2xSL(2,3))192,195
C22.3(C2xSL2(F3)) = C24.2A4φ: C2xSL2(F3)/C2xQ8C3 ⊆ Aut C22126+C2^2.3(C2xSL(2,3))192,197
C22.4(C2xSL2(F3)) = C24.3A4φ: C2xSL2(F3)/C2xQ8C3 ⊆ Aut C22246C2^2.4(C2xSL(2,3))192,198
C22.5(C2xSL2(F3)) = C2xC4xSL2(F3)central extension (φ=1)64C2^2.5(C2xSL(2,3))192,996

׿
x
:
Z
F
o
wr
Q
<